
© Semiconductor Components Industries, LLC, 2009

February, 2009 − Rev. 0
1 Publication Order Number:

AND8386/D

AND8386/D

Bootloading
BelaSigna� 250 Using the
I2C Interface

INTRODUCTION
This application note describes how to bootload

BelaSigna 250 through its I2C interface when it does not
have an EEPROM attached. This situation can occur when
a Bluetooth® or a baseband chip, or any I2C−master capable
chipset, is connected to BelaSigna 250 through the
two−wire synchronous serial (TWSS) port. The TWSS port
is essentially an I2C−compatible port. The I2C terminology
will be used throughout this document to designate
BelaSigna 250’s TWSS port.

Since no EEPROM is attached to BelaSigna 250, the
external device must have dedicated memory space in its
non−volatile memory to store the BelaSigna 250
application. It can either be internal Flash, as is the case with
some Bluetooth devices or external Flash / NAND Flash
memories in Bluetooth or mobile phone applications.

BelaSigna 250 has an I2C handler built into its Boot
ROM. This I2C handler allows any I2C−master host to
connect to and bootload BelaSigna 250, as described in this
application note. The ROM−based low−level
communication protocol on the I2C port is described in the
Communication Protocols Manual*.

THE BOOTING PROCESS

Contacting BelaSigna 250’s I2C Handler
BelaSigna 250 Boot ROM begins execution at Power−On

Reset (POR). Once booting starts, there is a defined time
period during which the I2C−master must contact
BelaSigna 250 to begin its I2C bootloading procedure. The
following table shows BelaSigna 250’s booting sequence.

Table 1. TIMING OF I2C DOWNLOAD PROCEDURE

Time (ms) Activity

0–20 POR Delay

20–70 Boot ROM Initialization

70–220 Boot ROM Execution

220–1000 Bootloading

After powering up BelaSigna 250, the I2C master must
continuously send the I2C protocol’s status request
command. BelaSigna 250 will not acknowledge (NAK) this
transfer until it is ready for communication. As soon as the
I2C−master receives the acknowledge (ACK), it means that
BelaSigna 250 has interrupted its regular booting process,
and is waiting for more I2C commands.

The I2C−master device cannot connect to BelaSigna 250’s
I2C handler during the POR delay; from the time of
power−on (t = 0 ms) to the end of the POR delay (t = 20 ms),
BelaSigna 250 will NAK any I2C request. The I2C handler
is activated by the Boot ROM at the beginning of the Boot
ROM initialization (t = 20 ms). When there is no EEPROM,
BelaSigna 250 enters a loop from this time (t = 20 ms) until
a timeout occurs (t = 1000 ms), at which time the Watchdog
Timer resets BelaSigna 250. If no I2C command is issued by
an I2C−master between the end of the POR delay (t = 20 ms)
and the end of the bootloading period (t = 1000 ms),
BelaSigna 250 will reset and the booting sequence starts
over with a POR (i.e., another 20 ms during which
BelaSigna 250 will NAK any I2C request). This process
continues until communication is established.

The I2C master can initiate communication at any time,
waiting for the I2C request to be acknowledged (ACK). If
the request is not acknowledged, the I2C master should wait
20 ms and try again. This will guarantee that successful
communication can be established. Once an ACK is
received, the bootloading process can start.

The voltage used for I2C communication depends on the
supply voltage of BelaSigna 250 (VBAT) and the state of
GPIO15 at POR, as shown in the following table. In typical
Bluetooth and mobile phone applications, GPIO15 must be
driven low during this time to select high−voltage mode.

Table 2. VOLTAGE MODE SELECTION

VBAT

Recommended
Voltage Mode

GPIO15
at Boot

Communication
Voltage

1.25 V Low−Voltage
Mode

High
(Default)

1 V

1.8 V High−Voltage
Mode

Low VBAT

*Available with the Developers Tookit. Please contact your local ON Semiconductor sales office for more details.

APPLICATION NOTE

http://onsemi.com

AND8386/D

http://onsemi.com
2

Setting the Clock
At powerup, BelaSigna 250 always runs on its

non−calibrated internal oscillator with the default clock
frequency of approximately 1.8 MHz. In this mode, the I2C
interface can run up to a maximum of 100 kbps. Clock
switching functions are available within the Boot ROM’s
I2C protocol, which allow the host processor to initiate a
change in the clocking structure, enabling BelaSigna 250 to
switch to an external clock, or to a higher clock using the
internal oscillator. When BelaSigna 250 is running with a
clock of at least 1.92 MHz, the I2C interface can run up to
400 kbps. The actual frequency of BelaSigna 250’s internal
RC oscillator varies due to variations in the production
process. Selecting the internal clock frequency setting of
3.44 MHz ensures that under any process variation
condition the actual clock frequency is above 1.92 MHz;
hence, the maximum I2C speed of 400 kbps can be used.
Alternatively, switching to an external clock that has a
frequency of at least 1.92 MHz is also possible to achieve the
maximum I2C speed of 400 kbps. Switching to the external
clock is done using the clock switching functions.

ON Semiconductor recommends setting the internal
clock frequency to 3.44 MHz for I2C for 400 kbps
communications, unless an external clock with frequency of
1.92 MHz or greater is used.

Access Mode
BelaSigna 250 has a built−in IP protection mechanism

whereby the chip is always in Restricted Mode at power−up.
Limited access to the DSP is allowed in this mode, and a boot
operation is not permitted. Consequently, the host must
unlock the device to gain access to all the ROM−based
protocol functions.

The I2C interface has a status byte that indicates the access
mode, which the I2C−master device can read at any time. It
is returned by BelaSigna 250 after sending a ’Get Status’
command (ASCII Code ’S’). The status byte has the
following format:

7 6 5 4 3 2 1 0

− 1 0 1 − − − 0 – Unrestricted
1 – Restricted

Bits 6:4 are always 0x5; this is the protocol version
identifier. Checking that this value is 0x5 means that
BelaSigna 250 and its I2C command handler are
communicating properly. Bits 7, 3, 2, 1 are reserved. Bit 0
specifies the access mode. This last bit allows the
bootloading program to decide whether unlocking functions
have to be executed to continue on the boot operation. If bit
0 of the status byte is 1 then unlocking is required; the I2C
master must use a ROM−based function called JumpROM
to go through the unlocking process. See the
Communication Protocols Manual for details on this
function.

Addressing
By default, the 7−bit I2C slave address is set to

0b000 0000. Consequently, BelaSigna 250 always responds

to a “General Call”. The slave address can remain, but as
soon as the boot process is finished and the DSP program is
being executed, the I2C port only responds to the I2C slave
address that the DSP program sets.

USING THE I2C PROTOCOL TO DOWNLOAD AND RUN
AN APPLICATION
I2C in a Nutshell

As mentioned earlier, the first transfer to take the control
over the I2C ROM−based protocol of BelaSigna 250 is an
I2C write transfer, which must be continuously sent to the
slave until it is acknowledged. In the example below, we use
the I2C write transfer to synchronize the ROM handler, and
we send a Get Status command, then we wait for the slave
to respond with an acknowledgment and the requested status
byte.

The I2C protocol is described in the I2C specification
issued by Philips Semiconductor. Each transfer (read or
write) has the following sequence:

1. Start the communication by sending a start
condition (SDA high−low transition while SCL is
high).

2. Each bit consists of a low−high−low pulse on the
SCL line while SDA is held low (0) or high (1).
The I2C master always controls SCL. When the
master is sending a bit, the master must set up the
data on SDA before the low−high transition of
SCL. When the master is receiving a bit, the
master must sample the data before the high−low
transition of SCL. Bits are transferred from most
significant bit (bit 7) to least significant bit (bit 0).

3. After each byte is transferred, a single
acknowledge bit is sent by the receiver. The
receiver must respond with an ACK (0) to verify
that the byte was received. A NAK (1) indicates
that the receiver did not recognize the byte, or is
not ready.

4. The first 8 bits after the start condition indicate
the 7−bit receiver address and the direction of the
transfer (0 = Write, 1 = Read). The addressed I2C
slave must acknowledge this first byte.
a. For a write transfer to the general call address,

send the following 8−bit sequence:
0b00000000 and check for an ACK from the
slave. Subsequent bytes are sent by the master,
and must be acknowledged by the slave.

b. For a read transfer from the general call
address, send the following 8−bit sequence:
0b00000001 and check for an ACK from the
slave. Subsequent bytes are sent by the slave
and must be acknowledged by the master.

5. The I2C master controls how many bytes are sent
(in a write transfer) or received (in a read transfer),
and terminates the transfer by sending a stop
condition (SDA low−high transition while SCL is
high).

AND8386/D

http://onsemi.com
3

Figure 1. A Complete I2C Transfer

See the I2C Bus Specification from
Philips Semiconductor for more details on the I2C
communication protocol.

A Complete Bootloading Example
The following description shows how to connect

BelaSigna 250, and how to initialize a proper

communication, take care of the restricted mode, and make
the necessary steps to switch the internal clocking structure
of BelaSigna 250, so that it can support the maximum
400 kbps I2C transfer rate.

Table 3. INITIALIZE AND UNLOCK BELASIGNA 250 THEN CHANGE THE CLOCK FREQUENCY

Command

Master
�

Slave Description

1 Until ACK:
Get Status
’Write to address 0’ (0x00) + ’S’ (0x53)

→ Continuously poll the ROM−based interface, sending the address byte,
followed by a status byte request. As soon as BelaSigna 250 is interrupted,
it sends an ACK, the communication is established and the normal boot
process of BelaSigna 250 is stopped. BelaSigna 250 waits for more I2C
commands.

2 ’Read from address 0’ (0x01) → Once the ACK is received, a read operation must be initiated by the
master...

(0x51) ← ...and BelaSigna 250 responds with 0x51; the last bit indicates that the chip
is in restricted mode.

3 Reset TWSS
’Write’ (0x00) + ’Q’ (0x51)

→ Reset the I2C interface, set the GPIOs to their default values, and install a
post−boot safe system status.

4 Execute JumpROM function 5
’Write’ (0x00) + ’J’ ’5’ (0x4A 0x05)

→ JumpROM function “Set Opcodes” prepares BelaSigna 250 to run
JumpROM unlocking commands.

5 Execute JumpROM function 4
’Write’ (0x00) + ’J’ ’4’ (0x4A 0x04)

→ (This step is unnecessary when no EEPROM is connected.)

JumpROM function “Wipe” writes the 0x5555 pattern in the protected re-
gions of the EEPROM.

6 Execute JumpROM function 3
’Write’ (0x00) + ’J’ ’3’ (0x4A 0x03)

→ JumpROM function “Set Unrestricted” exits restricted mode.

7 Get Status
’Write’ (0x00) + ’S’ (0x53)

→ Master requests the value of the status byte.

8 ’Read’ (0x1) → Once the ACK is received, a read operation must be initiated by the
master...

(0x50) ← ... and the response shows that the chip is not restricted anymore. It can
now be programmed.

9 Set Clock Frequency
’Write’ (0x00) + ’F’ 0x0800 (0x46 0x08
0x00)

→ (This step is required only if I2C communication @ 400kbps is desired)

Change the clock frequency from 1.8MHz to 3.44MHz by setting
A_CLK_CTRL to 0x8, and leaving D_CLKSEL_CFG at the default 0x0
value. Use different register values to switch to an external clock. See the
Hardware Reference Manual.

10 Master The I2C master can now change its I2C clock frequency to 400kbps.

11 Until ACK:
Get Status
’Write’ (0x00) + ’S’ (0x53)

→ Since clock settings were changed on BelaSigna 250, this polling loop
ensures that communication is re−established.

AND8386/D

http://onsemi.com
4

Table 3. INITIALIZE AND UNLOCK BELASIGNA 250 THEN CHANGE THE CLOCK FREQUENCY

Description

Master
�

SlaveCommand

12 ’Read’ (0x01) → Once the ACK is received, a read operation must be initiated by the
master...

(0x50) ← ... and the response shows that the chip is still unrestricted and that
communication is working properly.

Downloading Object Code
The I2C interface is now operating properly, and the

system is ready to start the process of downloading the
object code to the three different memory spaces (X, Y and
P) of BelaSigna 250.

When developing software for BelaSigna 250, various file
formats can be generated and used, depending on the
situation. The simplest way is to use the .o file format and a
utility that ON Semiconductor can provide which
automatically converts the .o file into a C−Header file (as
described later in this document). Other options are also
available to parse the object file and store it in the host code.

If the language used to develop the I2C bootloading
application is Python, then the ON Semiconductor
”absolute_file” module (absolute_file.py) already has all of
this logic built−in. All communication modules provided by
ON Semiconductor are available in a product called the
CTK Developer Kit (see ON Semiconductor’s BRD8070/D
for more information).

The CTK libraries can be used to develop PC software in
Python or other languages like C++. However, these are only
usable when you are using a PC and the Communication
Accelerator Adaptor (CAA) to communicate with
BelaSigna 250’s I2C port. When developing embedded
microcontroller software to communicate with
BelaSigna 250, you cannot use these CTK libraries. In this
case the low−level communication functions must be
implemented using the microcontroller’s I2C master or
GPIO functionality. Alternative solutions and support can
be provided by ON Semiconductor to implement the I2C
protocol at this low level.

Downloading a Sample Application
The following example assumes the use of the C

conversion utility applied on a dummy object file. It shows
the structure of the generated C−header file, as well as the
associated I2C commands needed for the transfer to
BelaSigna 250.

#define DOWNLOAD_BLOCK_COUNT 5
struct DataBlock {

enum MemorySpace memspace;
unsigned short base;
unsigned short wordCount;
unsigned short checksum;
unsigned char *formattedData;

} downloadBlocks[5] = {

{ 4, 0x1000, 0x00c2, 0xebe4, downloadData0 },
{ 0, 0x4000, 0x0044, 0xb67a, downloadData1 },
{ 0, 0x4180, 0x0040, 0xea0d, downloadData2 },
{ 0, 0x4200, 0x0010, 0x3c0f, downloadData3 },
{ 2, 0x0100, 0x0010, 0x168c, downloadData4 },

};
The above code snippet presents a summary of the data

that are parsed in the .o file. Every contiguous block of data
is declared as a unique block of data, and we can see that
there are 5 blocks. All the blocks can be identified by their
memory space identifier (0 for X, 2 for Y, or 4 for P), the base
address in the destination memory bank, the number of
words to be transferred and a checksum. The last element
points to the actual data, as can be seen below, where the
third data block is shown:

unsigned char downloadData3[] = {
0x57,
0xff, 0x17,
0xfd, 0x0b,
0xfa, 0xa9,
0xf8, 0x1c,
0xf5, 0xec,
0xf5, 0x00,
0xf6, 0x88,
0xfb, 0xb9,
0x05, 0x7f,
0x14, 0x26,
0x27, 0x1e,
0x3c, 0xe9,
0x53, 0x41,
0x67, 0x6a,
0x76, 0xb3,
0x7e, 0xf1,

};
This data block contains the actual words to be

transferred. For efficiency, the data is prefixed to the actual
command (0x57, equivalent to ’W’ in ASCII), that is used
to transfer the data block through the I2C interface. Each
data word is broken into two bytes: bits 15−8 first, followed
by bits 7−0. The checksum for each data block is the sum of
the data words, plus the memory space identifier and the
base address of the block. For robustness, large blocks of
data are broken into smaller blocks that can be transferred
over the I2C interface more reliably.

The I2C procedure to download this fourth block is
presented in the following table.

AND8386/D

http://onsemi.com
5

Table 4. DOWNLOAD SECTION AND VERIFY CHECKSUM

Command

Master
�

Slave Description

1 Set Memory Block Pointer
’Write’ (0x00) + ’M’ (0x4D) 0x42 0x00 0x00 0x10
0x00

→ This prepares for a 16−word transfer to be copied in the X
Memory at address 0x4000

♦ 0x4D (’M’ in ASCII) means Set Memory Pointer
♦ 0x42 0x00 means starting address
♦ 0x00 0x10 means 16 words

0x00 means MEM_SPACE is X

2 Write to Memory
Write’ (0x00) + ’W’ (0x57) 0xFF 0x17 ... 0x7E 0xF1

→ This tells the I2C handler that the data words are coming.
♦ 0x57 (’W’ in ASCII) means Write
♦ 0xFF 0x17 is the first data word

All subsequent words to be sent
♦ 0x7E 0xF1 is the last data word

There are 16 words to be sent (0x10)

3 ’Read’ (0x1) → Once the transfer is finished, a read operation must be initiated by
the master...

(0x3C 0x0F) ← ... and the Write command automatically returns a checksum. The
master application compares the returned checksum to that con-
tained in the header file

The above method must be applied successfully to all the
sections in the header file. If a checksum mismatch is
detected, the last data block can be retransmitted.

Running the Application

Table 5. RUN APPLICATION FROM PROGRAM MEMORY

Command

Master
�

Slave Descriptie

1 Start Application
’Write’ (0x00) + ’G’ (0x47) 0x10 0x00

→ Place the Program Counter at address P:0x1000, and start the
application from this entry point.

After running this command, the bootloading process is
complete; BelaSigna 250 has correctly received its object
code, and is freely executing it. From this point,
BelaSigna 250 is not executing its I2C handler any more,
and consequently, it will not respond to ROM−based I2C
commands until its next reboot. Any subsequent
communication with the I2C interface has to be developed
as part of the DSP application with its own I2C handler.

I2C COMMAND INTERFACE TO CONTROL THE
APPLICATION

The application is now running on BelaSigna 250, and as
mentioned above, any subsequent communication with the
I2C interface has to be developed as part of the DSP
application. ON Semiconductor recommends changing
BelaSigna 250’s I2C slave address to a value that differs
from the general call address, and for clarity, defining
application−specific I2C commands with different
identifiers than those defined in the ROM−based protocol.

Since I2C hardware exists between the host processor and
BelaSigna 250, it is often very useful to implement a
specific I2C control interface between the two devices.
There are many configuration options within BelaSigna 250

that can be controlled by the host processors. These
configuration commands can include the following
functions and more:

♦ Apply a software reset to BelaSigna 250 (restart the
application from entry point)

♦ Get status information on the application
♦ Change processing modes
♦ Enable/disable algorithms
♦ Select input channels
♦ Select input preamplifier gains
♦ Select output stage
♦ Apply master volume
♦ Control sleep mode
♦ Control algorithm parameters

ON Semiconductor can provide implementation
examples of such control interfaces, as well as the assembly
software framework. This enables a much faster
implementation and allows developers to concentrate on the
core signal processing algorithms, instead of spending time
implementing such an interface with all the associated
consequences.

AND8386/D

http://onsemi.com
6

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent
rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an
Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5773−3850

AND8386/D

I2C developed by Philips Semiconductor which is now called NXP.

BelaSigna is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).
Bluetooth is a registered trademark of Bluetooth SIG.

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

